
Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-1-

Tools and Methods for
Optimizing

Network Performance

Jonathan Harris
Division Manager

Scalability/Performance Division
RTTS

Authored by:

R. Allan Baruz
Senior Engineer

Scalability/Performance Division
RTTS

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-2-

Tools and Methods for Optimizing Network Performance

Abstract/Scope
This paper discusses network analysis and performance tools that may be used to tune
enterprise architectures for optimal performance. It also considers which processes are
best suited for analysis, design, and optimization of enterprise architectures. It does not
discuss specific tools or methodologies. It
does not cover development or network
administration practices.

Introduction
Quality in the networked application
domain (also here called the enterprise
application space) does not solely refer to
functionality. If a web site’s product or
content is compelling enough, glitches in
page design and misspellings in non-
essential portions of the web site will be
overlooked or ignored. People are
adaptable and will learn to deal with
navigation quirks if you have a killer
product. However, performance problems
can have effects far out of proportion to
their relatively simple causes.

In one case, for example, a market data
feed provider contracted us to diagnose
performance issues with their site. We
eventually traced the problem to the way an application was performing single fetches,
as opposed to batch fetches, to a back-end database. The database was queuing
requests and the queue was only growing larger. This issue triggered a number of
other, more minor issues, and the cumulative performance penalties for each of these
issues cascaded throughout the whole system to the point where most user requests to
fee-based services were not executed. Such performance issues can cripple an
enterprise’s bottom line.

Enterprise architectures are grounded in networks and applications. Networks support
applications; applications animate networks. When applications fail to completely utilize
networks, or networks cannot fully support the applications that run upon them, the
enterprise is standing on shaky ground.

Enterprise Architecture Issues
Networks have grown to support many needs in corporations, industries, government,
and education. Unfortunately, the very complexity that makes them useful for a wide
range of needs makes them vulnerable to problems that are inherently difficult to

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-3-

diagnose and treat. Because networks are such an integral part of today’s enterprises,
supporting applications of every type, determining the sources of low responsiveness
and throughput is imperative. Enterprise application architectures may have any number
of problems that cost money in one way or another if left untended.

Applications may not be engineered properly to take advantage of network features.
Application components may not be distributed across a network architecture in a
manner optimized for response time, throughput, or reliability. Networks may have been
engineered for different purposes and are not optimized for their current workload.

Applications are considered responsive and “interactive” when latency is kept down.
High response times are looked upon with anything from scorn to frustration to sheer
fury. Because large systems are complex, high latency in back-end components can
disproportionately affect overall system performance. Reducing response times is
critical to providing high-quality service to customers (internal or external). Latency
increases in the presence of, among other things:

• improperly tuned protocol parameters in servers and gateways,
• poorly designed application architecture,
• stray DNS or routing table calls,
• functional impedance/mismatch between component systems, and
• poorly chosen message-passing schemes

Systems engineered for high throughput can service more customer or client requests
in a given amount of time and are able to deliver more data when the need arises. But
the common response to low throughput—“buy a bigger pipe!”—often ignores the real
problem, and can mask bottlenecks whose removal can offer dramatic improvements in
delivery unrelated to the bandwidth provided by the service provider.

Customer trust in a corporation stems from every aspect in which the corporation deals
with the customer. The reliability of enterprise application architectures establishes trust
in a corporation’s Internet presence, which is the first and most common point of
presence—it is increasingly the public face of the company. When customers get
charged twice for services, when critical consumer data is released to hostile parties—
all these situations erode trust in the corporation.

Finding the perfect balance between bandwidth demand and network infrastructure may
seem trivial, but the differences between the level of bandwidth provided (“provisioning”)
by service contracts or an internal architecture can make or break a division. Over-
provisioning loses money, and under-provisioning loses customers. Correctly
provisioning a web site for the increasing demands that will be put on it can be the
difference that puts a business unit or a small company in the black.

Intimately tied with this idea of ideal network provisioning is the idea of scalability.
Enterprises play for high stakes when they create multimillion dollar networked
applications, and one of the best ways to ensure that the gamble pays off is to make

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-4-

sure that the applications are still running smoothly when their customer base has
grown twenty-fold. In order to assure this, the applications must be able to run not only
current conditions, but perform gracefully as the infrastructure upon which they run is
enhanced or expanded to meet client needs. Designing systems for scalability requires
accounting for variables that are dependent on numerous factors. Legacy applications
that were designed monolithically may balk when their functionality is distributed among
a number of components scattered throughout a networked architecture, no matter how
smoothly the components match the functionality of the application modules.

Performance Analysis
Though any single networked application issue may not cripple an enterprise
architecture, in conjunction, they can compound other network issues until a web site or
client-server system is rendered unusable. Analysis of such a networked system for
bottlenecks begins with somehow quantifying its performance in a number of factors.
Some of these factors include:

• Functionality
• Responsiveness
• Throughput
• Load

One must determine acceptable metrics for the
system under test (what is possible or likely for a
given architecture), measure the system under
test, and steadily reduce the difference between these two figures by pinpointing
bottlenecks until the system performs properly. This last portion is the province of the
network analyst. Network analysis is a supplement to good network design and
complements the network designer’s skill set.

Tools
A properly chosen tool set augments human skill. The many tools available to the
performance analyst range from the high-level abstractions of application messages to
the lowest-level details of transmitted data. Modeling, simulation, emulation, fault
injection, monitoring, packet traces, packet analysis, and log analysis are all useful in
the hands of a practiced analyst.

(1) Modeling
Modeling is one of the fundamental tools of the information revolution. All
information models reality to some extent, and the extent to which information
properly models reality determines its usefulness. Profiles model people.
Applications model workflows. Simulations model complex systems. Prototypes
model the end point of an engineering project.

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-5-

Models have descriptive power. Web advertisers can use data from web-
browsing habits to create a model so as to classify them as a bad credit risk, a
well-read individual, a parent of several children. Developers may prototype
applications to define the requirements for a feature set. Thus models can be
used to communicate information.

Models also have predictive power. Using a demographic profile, web advertisers
can craft ads to target specific groups with ads. Using a prototype, we can
determine a first-cut approximation of the cost of a particular software application
and determine its feasibility using a cost-benefit analysis, which itself is modeled
using a worksheet.

(Image supplied by OPNET Technologies)

Why model?
Attaining an understanding of problems with networked applications (or applied
networks) is complex. Creating a model or set of models produces a viable,
reified hypothesis of how the analyst believes a system, such as a prospective
network, behaves. Such a model can generate fine-grained hypotheses
(predictions) that may be compared against reality. The results of these
comparisons (experiments) may be used to refine the model further and produce
more accurate predictions.

Models abstract features relevant to an investigator’s study from their complex
real-life details. They allow you to visualize a system under study and ease

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-6-

analysis of that system. They allow formal decomposition of complex systems
into more comprehensible components. Good models clarify thinking about
complex systems and are particularly useful in communicating information about
systems with others.

All decisions are made on the basis of models, whether mental models or
realized in some formal manner—on paper or electronically. Models are based
on assumptions about how real systems work. Assumptions about complex
systems are often related to other assumptions. We select concepts and
relationships to represent the real system when we think about them, but these
relations are often interconnected in ways too difficult to follow mentally or
describe easily, and changes to these models have unpredictable effects.

A model embodies a theory of system structure. It explicitly states the
assumptions behind the structure, and is easily modified to address new
information and concepts. Alternative decisions and policies can yield quick
predictions.

Model types
Menasce and Almeida (1988) propose the creation of three separate models to
determine the impact of changes to networks and applications on the enterprise.

• workload model
• network model
• price model

Workload models represent the kinds of activity a network will support when it is
deployed. Network models represent the underlying systems and infrastructure
that support workloads, abstracting features that, in the analyst or designer’s
case, relate to performance. Price models attach costs to the various
components—gateways, cablings, and systems—that will be considered when
evaluating the potential return on investment and balancing costs with benefits.
Charging into performance analysis without at least some of these models in
hand leads to faulty assumptions and wasted time.

(2) Fault injection
Fault injection tools test networks and enterprise applications by producing
malformed packets. Both network switching equipment and networked
applications must contend with corrupted, fragmented, or maliciously formed
headers and data, even stray packets. Determining how your enterprise
architecture can handle high numbers of evil packets can go a long way to
assure that your applications are secure, healthy, and properly immunized
against a number of attacks. The work of crafting such packets may be done by

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-7-

the analyst, but often a number of packaged tools come with the most common
packet issue types for current testing.

(2) Network monitoring
Network monitoring tools measure the effects of existing traffic on your network
and applications running on that network. Performance thresholds and functional
goals can be set and administrators notified when these standards are not met,
by pager, e-mail, instant messaging, or other means. Monitoring does not deal
with targeting existing problems, but with forestalling or detecting such problems
as they happen, and is thus susceptible to automated solutions. Using network
monitoring to target network problems requires building a great deal of
intelligence into the tool.

The most effective way to use these
tools properly is to become intimately
familiar with the performance
characteristics of the network
infrastructure. This means verifying
that the load on databases and
application servers is near saturation
without exceeding a critical threshold.
Properly sizing a CPU cluster or a
server farm also requires knowledge
of the kinds of traffic that will make
requests of these resources.
Possessing models of these
performance and load characteristics
allows comparison and can be used to
notify proper administrators of
deviations from the norm.

Network monitoring typically compares a baseline result or normative measure
with the current system performance or functionality, and notifies stakeholders of
deviations.

(3) Simulation
One tool for attacking network issues is a network simulator. With a simulator,
you first model your prospective or actual network using one of a number of
techniques, then model the load from application traffic that the network would
carry. With network and load models in hand, the analyst may then simulate how
the proposed load would behave on a network and gather probable results for
response times, throughput, scalability, and so on, under that model. Using such
a tool can dramatically reduce network costs, especially if used preemptively,
before incurring the costs of a real and all-too-expensive network deployment.

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-8-

The accuracy of simulation tools depends on how closely the models of individual
components mirror reality, and how well the composition of those models reflects
the interaction of those components in reality. If we take these two elements for
granted, then the analyst can simply model the enterprise architecture from the
simple components and run the simulation over that model. Otherwise, the
analyst must instrument the performance characteristics of the basic components
and map the metrics thus gained to the models.

Network simulation tools can also model legacy networks. Of what use is this?
The analyst can measure the effects of proposed changes to an enterprise
architecture in mere moments using an already-modeled system. A change in the
network architecture is likely to affect the application load, and a change in the
workload is certainly going to affect how well the network carries its traffic. A
proper system model will quantify this for you, and any quantifiable change with a
reasonable degree of accuracy will allow comparison. Thus, within hours, a
number of alternative scenarios and what-if situations can be generated to show
the impact on load, response time, throughput, and cost.

Simulation has the greatest potential for cost savings among all the tools so far
mentioned. Because simulation is usually a preemptive strike against poor
performance, before a single wire is laid down, the analyst can determine with
high probability vital metrics without incurring deployment costs. Re-engineering
applications and networks in light of new requirements is something all sane
administrators and developers wish to avoid.

(4) Emulation and Traffic Generation
The most accurate way to measure the true performance of enterprise
applications is to put a real load on it. However, putting a site into production
simply to test its scalability is a sub-optimal solution at best. When enterprise
applications are tested before they are put into general release, everyone—
management, developers, end users, and network administrators—rests easier.

Performance testing tools allow the analyst to take a workload model and
“emulate” the traffic that its real-life equivalent would produce. The workload
model it uses may be created through various techniques, including such
sources as packet-capture, log analysis, mathematical modeling, interviews with
business analysts, or some combination of these. It may be created, structured,
and refined by deriving network activity based on these sources and structured
into roles.

The products of the traffic generated from this model is then applied to the
networked application or applications in question, and performance measures
such as response time, throughput, server load, and so forth can be taken.

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-9-

Given a properly modeled workload and a representative (production-like)
environment, the analyst can definitively state that the measures taken of the
system under load accurately reflect how the system under test will perform
under real-life conditions.

(5) Packet Trace and Analysis
Of all network analysis tools, the most
comprehensive solution to pinpointing the
source of network issues is the examination of
a packet trace. All network problems can be
sufficiently traced to their sources through a
properly conducted and analyzed packet
trace. This does not necessarily mean that
doing so will be easy. Packet traces in their
purest form are complex and require domain-
knowledge at orders of abstraction some four
to seven layers deep, depending on the kind
of applications and which protocol stacks you
are analyzing. Stripping irrelevant data from
the packets to extract information pertinent to
the analyst’s study is not a trivial task.

Though packet traces are usually taken in

architectures that are already in place, analysts may simplify their tasks by
abstracting from real heterogeneous workloads “typical” workloads to capture
and test. Traffic workload must be properly characterized and profiled before it is
used to represent real traffic, and atypical captures can waste time and
resources—they can mislead and divert those resources to problems that don’t
exist, leading to misguided optimization efforts.

Determining the source of a problem through the use of a packet trace is, again,
difficult. Looking back at the sources of enterprise application response time
latencies and clogged bandwidth, we can see that they can occur at any one of
the various layers of a protocol stack or distributed application architecture.

For example, in the transport layer of the protocol stack (OSI level four or the
TCP layer of the TCP/IP stack), tracing the flow of network calls from packet to
packet (in the OSI third layer, or IP layer) is a tedious chore.

Thankfully, a number of tools exist that take the tedium out of examining packet
traces. These tools can interpret packet traces in a number of ways and display
network behavior in powerful notations both intuitive and instructive.

Certain tools can take the packet trace data and render visual maps of the data,
representing network flows graphically. This is an expressive technique for

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-10-

conveying to analysts network problems in an immediate, intuitive fashion. With a
proper view of the network workload, the issues manifest in a comprehensible,
easily interpretable manner. While it is a delight to work with such tools, the
downside is that such tools tend towards the high end of the scale, both in
complexity and cost.

Other tools can reconstruct the information that is being sent over the network by
interpreting the packet trace data at various levels of detail. It is possible to
reconstruct what each service layer of the protocol stack “intends” and compare
this service to the actual service delivered by that layer. Statistics that describe
the number and latency of packets flowing over the network can give powerful
hints as to what portions of the enterprise application introduce bottlenecks.

Process
There are a number of tools that can give you quick fixes to network problems. What is
most lacking is not the tools, nor the capital, but a reliable method for using these tools
in a disciplined manner to increase the efficiency and effectiveness of your networks.

What are the characteristics of a
good process?
A process is a series of steps
intended to achieve a specific
result. What result? In network
analysis, the desired result is a
management with a full
understanding of the performance
of its system under test and the
variables that will impact that
performance.

The processes that underlie the
most adaptable, spry enterprises
tend to be phased and iterative.

Phases are sub-processes within a specific process that logically group a set of several
tasks into a specific activity. Iterative refers to that property of processes that improves
the specification of task success through repeated refinement. Phased-iterative
processes tend to have a number of corollary benefits that arise from the nature of
successive refinement through multiphase processes.

Such processes tend to be repeatable under similar circumstances, adaptable to
changing requirements, quantifiable, susceptible to improvement efforts, amenable to
tool-based and automation solutions, and focused on risk. Such processes come about
in response to fuzzy problems whose requirements are complex, not adequately
defined, or not completely defined when the process is started. If the requirements are

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-11-

moving targets, phased-iterative approaches such as Barry Boehm’s spiral process
(1988) help define requirements and specifications before extensive implementation or
complete commitment of resources takes place.

Network optimization is well suited to such phased, iterative approaches. Because
network optimization is always a moving target, dependent on (though by no means
limited to) such shifting and ephemeral factors as

• user population,
• user work habits,
• application definition,
• application development,
• network infrastructure, and
• network architecture,

it is likely that no enterprise will ever have a network fully optimized for all applications
under all conditions. However, approaching network problems intelligently and
methodically will do much to limit the exposure to risk that companies face as their
systems come to bear real loads.

Steps towards a methodology of network optimization
What would such a phased, iterative process look like? Let us take a quick look at one
possible approach.

• model the proposed (or existing) network
• measure the simulated (or emulated)
• determine the cause of bottlenecks in specific metrics
• focus on eradicating bottlenecks
• verify the improvements in the model (verify the cost effectiveness of the

improvements)
• implement the improvements in the network

Repeat until the network application response time, throughput, or cost is acceptable.
Notice that the end point is not defined in this relatively simple process; nor should it be.
Objectives are not set by a process — processes and methods are meant to achieve
objectives set by stakeholders.

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-12-

Objectives must be focused and achievable. The often-repeated SMART characteristics
of well-considered objectives also apply here:

• specific
• measurable
• attainable
• relevant to objectives
• time-based

“Reduce response time latency to six seconds or less for ninety-five percent of our
extranet partners within six weeks.” When one or more of these SMART properties is
violated, the focus of the process is lost and vague specifications are ignored, over-
considered, or assumed to be met.

As important to focused objectives is the proper attitude to attacking network and
application bottlenecks. A rigorous hypothesis-testing mindset will reduce the number of
bad leads and avoid the red herring trails that can waste valuable time. Combining this
mindset with a knowledge of networks and application architecture allows the analyst to
quickly find and eliminate network issues

Conclusion
This survey of network optimization and troubleshooting tools is far from complete.
Human ingenuity being what it is, new tools and types of tools are being developed at
an astounding rate. Protocols themselves are changing to accommodate vendors and
are successively refined as well as implementers determine faults and new needs to be
met, and new tools are created to accommodate these protocols.

A more in-depth examination of these tools can be found in Network Troubleshooting
Tools (Sloan, 2001). His focus, though, leans towards the lower-level tools, though his
survey is much more detailed than this necessarily short paper can justify.

Focused objectives, a good tool set, a solid methodology, and a proper mindset towards
the task are necessary to improve enterprise application architecture.

References
Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer,
May 1988

Sloan, Network Troubleshooting Tools, August 2001

Menasce and Almeida, Capacity Planning for Web Performance : Metrics, Models, and
Methods, June 1998

Nassar, Network Performance Baselining, May 2000

Copyright Real-Time Technology Solutions, Inc. April 2002 www.rttsweb.com
-13-

About the authors
Allan Baruz, senior engineer for the scalability/performance division at RTTS, is an expert in
network applications analysis and performance testing. He has provided consulting expertise at
many Fortune 500 companies, assisting numerous clients in the testing and tuning of high-
performance systems servicing users worldwide. Allan completed undergraduate degree work
at Rutgers University, focusing on statistical methods and computer science.

Jonathan Harris, performance and scalability division manager for RTTS, has planned,
executed and analyzed data for over 350 performance evaluations within every major market
segment. With over 13 years of experience in programming and testing, he has spearheaded
the development and implementation of RTTS’ proprietary scalability testing. Previously, Jon
worked as a lead testing consultant for Promark, Inc. where he developed the front-end
interface to the Promark Robot, now Compuware’s QA Load. Jon studied biology and computer
science at Carnegie-Mellon University.

About RTTS
RTTS is a professional services organization
that specializes in the testing of IT
applications and architecture. Serving
Fortune 500 and mid-sized companies
nationwide since 1996, RTTS has offices in
New York and Boston. RTTS draws on its
expertise utilizing best-of breed products,
expert test engineers and proven
methodology to provide the foremost end-to-
end solution that ensures application
functionality, reliability, scalability and
network performance.

To learn more about RTTS, visit www.rttsweb.com or contact:

Ron Axelrod, Director of Business Development
Tel: (212) 240-9050 x17

E-mail: raxelrod@rttsweb.com

How RTTS Optimizes Networked
Applications
As has been mentioned, this discussion of
network analysis tools and processes only
touches on the wealth of knowledge available
for optimizing systems. With years of hard-
won experience in tuning applications and
networks to deliver high-performance,
responsive systems, RTTS has a mature and
fully realized methodology and a thorough
grounding in the issues involved—resources
which can be brought to bear to identify
bottlenecks and system constraints that
produce slow or anomalous performance.

