

©Real-Time Technology Solutions, Inc. November 2005 www.rttsweb.com Page 1 of 5

Implementing

Automated Testing Solutions
on

Complex

Brokerage Trading Platforms

Robert James Stanley
Team Lead/Senior Test Engineer
RTTS

©Real-Time Technology Solutions, Inc. November 2005 www.rttsweb.com Page 2 of 5

The Brokerage Industry Challenge
Today, the brokerage industry is struggling to leverage the latest technologies to build complex order
management systems, all while maintaining data integrity, security and timeliness to market.

Markets are interconnected in a river of money and electronics that span the globe. Financial companies are
under mounting pressure to meet investor requirements for speed, accuracy and competitive pricing. Brokerage
clients face a challenge in managing their global financial systems. Security, reliability and bandwidth on
networks, software and infrastructure are increasingly under stress. As these networks and applications become
more integrated and sophisticated, the need for quality assurance has never been greater. When defects go out
into production the result is financial loss measured in time, money and expenditure of resources to correct the
problem.

 A premier brokerage firm implemented a major overhaul of its trading systems. The firm updated

legacy applications based on mainframe technology, to a state-of-the-art, client-server trading
platform.

The firm had contracted with a software vendor specializing in such large-scale trading system conversions. As
with many such projects, the implementation team had to contend with significant hurdles. The implementation
plan had to accommodate:

• Maintenance of the integrity of the old trading system while simultaneously phasing in the new,
ensuring uninterrupted service to clients and access to the marketplace.

• Verification that the new trading system complied with internal, Federal and State regulations

governing the trading of securities.

• Validation that the new trading system properly handled and routed orders, maintained data integrity
and accuracy, and provided real-time updates on orders and market conditions.

• Verification that the new system exceeded the old in key benchmarks such as speed of processing

and updating orders, handling large volumes of market data, and presenting an intuitive interface for
traders utilizing the system while also providing enhanced features to support different trading
strategies.

• Incorporation of automated testing into the QA process for the new trading system.

The Strategy
The brokerage firm knew it could not overcome these challenges without the use of automated testing but
because of the technical complexity, the trading software had defeated previous attempts by automated test tools
to create functional test cases using standard techniques. Eventually Compuware’s TestPartner was identified as
the ideal automated test tool to automate the trading application. TestPartner is a second generation automated
test tool with technology to hook directly into the target application’s COM (Component Object Model)
components. This allowed for direct access to the application objects and controls that were either unreachable
by other automated technologies or at best, only partially “seen” by operating with a third party interface. With
this kind of open access, many of the major issues associated with automation were eliminated, including
productivity costs due to poor object recognition and related automation code maintenance costs. Based on the
performance of TestPartner, it became possible to plot a complete strategy to test the application and its
systems.

©Real-Time Technology Solutions, Inc. November 2005 www.rttsweb.com Page 3 of 5

System Under Test

Transactional
Function

Repository

Data Repositories

Test Data
Repository

Test Director

Run
Repository

Script
Repository

Test Partner

Playback
Engine

Results validation
and publication

Baseline
Recorder

Script
Automation

Selector

- Spin the Server
The trading software communicated between clients and the server on a transactional basis, with a
request/reply communication model between the client and server. By being able to take advantage of
TestPartner’s ability to use the trading application’s native COM controls, TestPartner could “talk” directly to
the trading server, a feat not readily accomplished with other automated test tools. Thus, test scripts could be
created to spin orders directly into the server (bypassing the application GUI) and move them through the
order management system with client/server transactional messages and queries to both to the system’s
real-time database as well as SQL to the backend booking systems. This approach was selected because
the server architecture was relatively stable while the GUI design underwent regular revision. The result of
bypassing the GUI, but using the client protocols for communicating with the server, was that any patches or
builds from the software vendor that dealt with the backend systems could be tested and validated quickly,
without the maintenance burden of GUI-based automation code.

- GUI Interrogation
One of the most common reasons for the failure of test automation implementation projects is that naively
built test scripts lead to an unanticipated and unacceptable code maintenance burden. The typical strategy is
to drive test cases through the GUI by clicking buttons, entering text into fields, selecting menu options, etc.
However, testers untrained to leverage the
power of testing tools are forever playing
catch-up with the GUI, as features change
regularly due to user requests and
development enhancements, thus breaking
the automation code for playback until it
can be retooled to be compatible to the
most current release.

The trading software on this project had
additional factors that foiled previous
attempts at automation. The first was its
very complexity with numerous controls and
data feeds. The second was that it could be
counted on to have potentially dozens of
releases and upgrades from the software
vendor on a yearly basis, after which it
would undergo customization to fit the
requirements of each brokerage client and
locality. This meant that the application
could be counted on to remain dynamic,
especially in regards to the interface.

In this area, TestPartner had an advantage
over competing tools because it didn’t have
to guess what type of object a GUI control
might be. Because TestPartner could “see”
directly into the ActiveX controls, automation engineers could always script against control properties and
methods accordingly. Functions could be written in TestPartner to take advantage of the COM object
properties and methods, to create a highly modularized automation approach. If the object changed in a
release, then only a function in a TestPartner code library needed to be updated and significant degree of
code reusability was achieved.

©Real-Time Technology Solutions, Inc. November 2005 www.rttsweb.com Page 4 of 5

The combined strategy for GUI verification was to drive transactions through the server and validate resulting
code changes by interrogating the GUI front end for the transaction data submitted to the system. Since the
bulk of activity that affects the GUI can be driven and controlled though the server, test engineers could drive
orders through the trading system and easily monitor the front end for a change in status to those orders.
Order entry, amendments, routing, trade executions, busting of trades, the entire spectrum of brokerage
functionality could be run through the more stable server environment via the backend pipeline, and verified
in the front end in the data grids that displayed order information. This helped insulate and ‘future-proof’ the
automated test scripts against changes since server processes underwent far fewer upgrades and builds
than the GUI itself.

- GUI Inventory
In addition to the work described above, a more general approach to GUI testing was not abandoned.
Instead, a complementary strategy was devised where the ‘look and feel’ of the GUI was recorded on the
application level, in which the UI properties and features of individual objects and controls were interrogated
by automation code, rather than through the use of button clicks via a mouse or keyboard. By tapping into
built-in API’s and libraries native to the software, automation engineers were able to establish a baseline of
all the application objects and controls. This avoided the maintenance headache associated with automation
scripts replete with mouse coordinates, synchronization issues and the other usual pitfalls associated with
automated testing. If objects, controls and properties changed in the application, then a tester would simply
run a test script designed to inventory everything in the application and update the baseline automatically.
The decision was made to keep user-level testing of the GUI on an as-needed, manual basis, because the
ROI and the maintenance overhead for automated test scripts for that type of functionality was not cost-
effective and did not add enough value. Because of this approach, a level of testing was achieved that would
not have been otherwise possible. In the automated GUI testing that was implemented, TestPartner was
able to drill down to as fine a detail as the brokerage client deemed necessary to test the standard look and
feel of the application (including font size and color used in its GUI controls) thus ensuring a stable,
successful process from release to release.

Results analysis
The results of automating the trading software proved a success by the brokerage’s own metrics. Playback of the
automated regression test bed completed in 8 hours what had previously taken one manual execution resource 8
days to run. The brokerage client calculated that by simply executing the automated suite of tests in only four
cycles of testing, it paid for itself. In addition, the client was able to reassign their business analysts, who were
being used as manual testers as a stop-gap measure, back to their regular duties, an additional cost savings in
time and resources.

As an additional bonus, the engineers were able to design and implement a database for input data and fully
integrated it to work with the TestPartner suite. This feature allowed for a more robust solution, with better
support for future expansion and maintainability than typical comma-delimited files or spreadsheet programs.

Finally the engineers, at the request of the client, integrated TestPartner to work with Mercury’s Test Director, the
firm’s defect-tracking and test management software. TestPartner was able to take full advantage of Mercury’s
published API for Test Director and a robust integration between the two products was built. TestPartner is able
to login to Test Director, read in test cases, update results and set pass/fails for test steps and entire test cases
all via Test Director’s API.

Because of TestPartner’s ability to work with Test Director, a final design feature was created to put the power of
automation into the hands of non-technical users. By embedding a keyword layer in the TestPartner code, the
firm’s team of testers could create test cases on-the-fly and kick off playback from TestDirector. Manual testers
could create test cases in Test Director as they normally would, using phrases that, when read in by TestPartner,
are translated into a direct action to be performed by automation. Business-friendly keywords were layered into
the steps that make up the test cases stored in Test Director. The non-technical tester identifies the test cases

©Real-Time Technology Solutions, Inc. November 2005 www.rttsweb.com Page 5 of 5

built this way to run in Test Director and kicks off playback in TestPartner. TestPartner retrieves the test cases
that the user has specified, interprets the steps the user wants to perform and then executes the specified
transactions. Later, when validation is being performed, TestPartner goes back into Test Director, retrieves the
expected result and compares it with the actual result, and publishes the information back into Test Director,
updating the pass/fail status of the test.

TestPartner was able to provide a total solution to what had been a testing quandary. By providing seamless
integration with both the application under test, and with the defect tracking software, TestPartner was able to not
only tie the two more closely together but actually led to a unique testing solution. It leveraged existing client
assets (for which a substantial investment had been made) and actually expanded on the usability and out-of-
the-box capabilities.

The success of this project has encouraged the client to pursue automation in other areas previously thought
inaccessible to automated test tools. As is often then case, coming up with the right strategy, developing a viable
test plan and having the right expertise on hand were the key factors in overcoming the difficulties in automating
complex trading platforms.

About the Author
Robert Stanley is a Team Lead and Senior Test Engineer for RTTS. With 13 years of management experience
and 6 years experience leading successful RTTS testing engagements, Robert has worked with many Fortune
500 firms in the brokerage, insurance, pharmaceutical, reinsurance and software development vertical markets.

About RTTS
RTTS is a professional services organization that specializes in the testing of IT applications and architecture.
With offices in New York, Orlando and Phoenix, RTTS has been serving Fortune 500 and mid-sized companies
throughout North America. Drawing on its expertise utilizing the leading testing products, expert test engineers,
and a proven methodology to provide the foremost end-to-end solution, RTTS ensures application functionality,
reliability, scalability and network performance. For more about RTTS, please visit our web site at
www.rttsweb.com.

