

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050 • fax 212.240.9020

20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106 • fax 617.249.0190

Copyright Real-Time Technology Solutions, Inc. – November 2001

End-to-End Testing
of

IT Architecture and Applications

Authored by:

Jeffrey Bocarsly, PhD.
Division Manager

Automated Functional Testing
RTTS

Jonathan Harris
Division Manager
Scalability Testing

RTTS

Bill Hayduk
Director

Professional Services
RTTS

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

End-to-End Architecture Testing refers to the concept of testing at all points-of-access in a computing
environment. For performance and scalability testing these include:

1. hardware
2. operating systems,
3. applications
4. databases and
5. network

In regard to functionality testing, points-of-access include:

1. the front-end client,
2. middle tier
3. content sources and
4. back-end databases

With this in mind, ‘architecture’ is the term that defines how all of the components in the environment
interrelate, how they interact with other components in the environment and how users interact with them. The
specific architecture that organizes components defines their strengths and weaknesses. The uncertainty in
how an architecture will respond to the demands placed on it creates the need for End-to-End Architecture
Testing.

Complex architectures
Typical heterogeneous computing environments today are a complex mix of legacy, home grown, third party
and standardized components and code. With the advent of the Web, architectures have increased in
complexity, often with a content-tier placed between back-end database(s) and the user-oriented presentation-
tier. The content-tier may deliver content from multiple services that are brought together in the presentation-
tier, and may also contain business logic that previously would have been found in the front-end of a client-
server system.

Figure 1 – typical architecture

Internal Clients
Client/Server

CRM/ERP
Server

Application/
Middleware

Server

External

Security
Server

Content/
eBusiness

Server

DB Server
Web Server

Internal Clients
Web

Firewal

Internet
Extranet
Intranet

xml

xml

xml

Firewall

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

For both functional and scalability issues, industry-standard testing practices, which evolved in response to
quality issues facing the client-server architecture, have centered either on the front end (functional) or the
back end (scalability/performance). This ‘division of labor’ derived largely from the fact that the classic client-
server architecture, a 2-tier structure, is not complicated relative to current multi-tier and distributed
environments. In the standard client-server arrangement, issues are either on the client side or on the
database side. The current trend toward architectural complexity makes this simple testing scheme obsolete.

The increase in complexity, overlaid with the problems of integrating legacy and cutting-edge development,
can make characterization, analysis and localization of software and system issues (functional and
scalability/performance) major challenges in development and delivery of software systems.

An overall quality strategy
These moves toward architectural complexity suggest that new, aggressive quality enhancement strategies are
necessary for successful software development and deployment. For control of scalability behavior, the most
potent strategy combines testing individual components of the environment with testing the environment as a
whole.

Figure 2 - RTTS’ Test Automation Process (TAP)

These parallel modes of analysis aide in determining the strengths and weaknesses of the architecture, and in
pinpointing which components must be involved in resolving the performance- and scalability-related issues of
the architecture. An analogous strategy, full data integrity validation, is recommended for the management of
functional quality. Because data may now derive from diverse sources, the validation of data integrity across
the full architecture is becoming increasingly critical. Assessing data integrity (including any functional
transformations of data that occur during processing) both within components and across component
boundaries leads to the efficient localization of each potential defect, making the tasks of system integration
and defect isolation part of the standard process of development.

3) Develop 3) Develop
prototype manual prototype manual

Test CasesTest Cases

6) Insert metrics 6) Insert metrics
into Test Planinto Test Plan

7) Improve Test Plan7) Improve Test Plan 8) Document more 8) Document more
Test CasesTest Cases

AssessAssess PlanPlan DesignDesign
AutomateAutomate

ExecuteExecute
TrackTrack

EvaluateEvaluate
ImproveImprove

4) Automate/execute 4) Automate/execute
prototype automation prototype automation

scriptsscripts

2) Create test 2) Create test
planplan

9) automate/execute 9) automate/execute
more automation more automation

scriptsscripts

10) Track 10) Track
defects/issuesdefects/issues

11) Evaluate 11) Evaluate
process/project. process/project.
Post mortem for Post mortem for

improvement.improvement.

1) Assess 1) Assess
projectproject

5) Evaluate and 5) Evaluate and
provide estimation provide estimation

metricsmetrics

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

For every question that can be asked about how an environment scales or performs, a test can be created to
answer that question.

- How many users can access the system simultaneously and still maintain acceptable response time?
- Will my high-availability architecture work as designed?
- What will happen if we add a new application or update the one I currently use?
- What should the configuration be to support the number of users we expect at launch, in 6 months
and in 1 year?
- We only have partial functionality – is the design sound?

For questions pertaining to functionality (UI presentation, business logic, component data handling, system
integration and system data integrity), an analogous set of testing strategies is available. Whether testing the
components individually, as subsystems or as a whole, tests targeting each of these questions can be
executed. End-to-end architecture testing exercises and analyzes the environment from the ground up.

The component level
End-to-end architecture scalability testing begins with Component Testing where each system within the
environment is exercised to determine its transaction (or volume) limitations. Functional testing applied at this
level validates the transactions that each component performs. This includes any data transformations the
component is required to perform, as well as validations of business logic that apply to any transaction handled
by the component. Both functional and scalability testing at the component level are useful as diagnostics
when the environment is being built.

As application functionality is written, Infrastructure Testing
verifies and quantifies the flow of data through the
environment. Once enough application functionality exists
to create business related transactions, Resource Testing
and Transaction Characterization Testing quantify the
system usage by transaction type. Modifying hardware,
operating system, software, network, database or other
configurations you can achieve optimal performance
through Configuration Testing. In parallel to these
scalability checks as the system is assembled, data
integrity must be verified as data begins to be passed
between system components.

Figure 3 – component interoperability (from ADTmagazine)

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

The full environment
When the system has been fully assembled, whole environment testing can be initiated. One of the first issues
that must be considered is that of integration.

Integration Testing addresses the broad issue of whether the system is integrated from a data perspective.
That is, are the components that should be talking with one another communicating properly? If they are, are
the proper data being transmitted between them? In favorable situations, data may be accessed at
intermediary stages of transmission between system components. These points may occur, for example, when
data is written to temporary database tables, or is accessible in message queues prior to access by target
components.

Access to data at these component boundaries can provide an important additional dimension to data integrity
validation characterization of data issues; in cases where data corruption can be isolated between two data
transmission points, the defective component has been localized between those points.

In the area of system capacity, whole environment testing begins with Scalability Testing. Scalability testing is
designed to determine the upper limitations of transaction and user volume without exceeding defined
performance requirements such as user response time.

Performance Testing and additional Configuration Testing may improve the overall performance and will
provide tradeoff information of specific hardware or software settings.

Figure 4 – Performance test

Test Type – Performance Testing

Determine whether the program meets its performance
requirements at a set load.

Performance by TimePerformance by Time

44

22

11

33

55

TimeTime

Virtual Virtual
UsersUsers

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

Concurrency Testing will profile the effects of database locking and deadlocking as well as single threaded
code execution.

Figure 5 – Concurrency test

Stress and Volume Testing are performed to test the resiliency of you environment to withstand burst or
sustained high volume activity without failing due to memory leaks or queue over-runs.

Figure 6 – Stress test

Reliability Testing exercises your environment at a sustained 75% to 90% utilization over an extended time to
simulate production.

Lastly as part of whole environment testing, Failover Testing is done to test the high-availability functionality
within the environment, should specific components fail. Failover testing answers the question of whether
users will be able to continue accessing and processing with minimal interruption if a given component fails.

Test Type – Concurrence Testing

Determine the effects of locking and deadlocking.

• Row Level Locking

• Page Level Locking

• Table Locking

• Single Threaded Processing

• Critical Path Processing

Test Type – Stress Testing

Perform repetitive high volume transactions in an attempt to
break the system (i.e. memory leaks, queue over-runs)

Free MemoryFree Memory

Monitor memory utilization before, Monitor memory utilization before,
during and after the stress test runduring and after the stress test run

8080

4040

2020

6060

100100

TimeTime

Virtual Virtual
UsersUsers

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

Figure 7 – Failover test

If an environment employs third party software or accepts feeds from outside sources or hosted vendors, then
SLA Testing (Service Level Agreement) testing can be conducted to ensure end-user response times and
inbound and outbound data streams are within contract specifications. Once external data or software sources
are in place, monitoring of these sources on an ongoing basis is advisable, so that corrective action can be
taken if problems develop, minimizing the effect on end users. There are many tools available to assist in
Service Level Management through Web site monitoring that RTTS can assist in implementing.

Modeling the architecture
As part of the process of design, the ability to model different architectures can help make network designs
more efficient and less error-prone prior to the acquisition of hardware or the implementation of software. Once
the test environment has been optimized and verified but prior to deployment, network infrastructure modeling
can help pinpoint inconsistencies and errors in routing tables and configurations. Additionally, application
transaction characterizations obtained during testing can be input into the model to identify and isolate
application chattiness and potential bottleneck points within the infrastructure.

Conclusion
The end-to-end Architecture Testing strategy described here exercises and analyzes computing environments
from a broad-based quality perspective. The scalability and functionality of every component is tested
individually and collectively during development and in prerelease quality evaluation to provide both diagnostic
information to enhance development efficiency and a high degree of quality assurance upon release. For
management of the trend toward architectural complexity and distributed computing, the strategy of end-to-end
Architecture Testing provides a robust solution.

Test Type – Failover Testing

Does the high availability architecture in place operate as
designed?

Normal Operation

Normal Flow

Normal Operation

Normal Flow

XX

Component failure

Detection &
Correction

Automatic
Notification

Minimal InterruptionXX

Component failure

Detection &
Correction

Automatic
Notification

Minimal Interruption

55 John Street • 12th Floor • New York, NY 10038-3712 • phone 212.240.9050
20 Park Plaza • 4th Floor • Boston, MA 02116 • phone 617.948.2106

Copyright Real-Time Technology Solutions, Inc. – November 2001

About the authors:

Bill Hayduk, president and director of professional services, has an excellent reputation in the technology field
and is particularly noted for his methodology and automation expertise. Over the last 19 years, Bill has
successfully implemented large-scale projects at many Fortune 500 firms. He has worked in various sectors
including global banks, brokerage firms, multimedia conglomerates, pharmaceutical, and insurance and
reinsurance companies.

Bill holds an MS degree in Computer Information Systems from the Zicklin School of Business (Baruch College)
and a BA in Economics from Villanova University. He has been a selected speaker at industry-specific trade
conferences, as well as a source of information for corporations and has been referenced in many industry trade
publications.

Jeff Bocarsly, the functional testing division manager at RTTS, has successfully implemented automated
software testing projects at many Fortune 500 firms. His experience includes project in various sectors
including brokerage firms, media, pharmaceutical, software, banking, insurance, and reinsurance companies.
He specializes in implementing test automation and methodology solutions for software development groups.

Jeff holds a BS from UCLA and Masters and PhD degrees from Columbia University.

Jonathan Harris, performance and scalability division manager for RTTS, has planned, executed and
analyzed data for over 350 performance evaluations within every major market segment. With over 13 years
of experience in programming and testing, he has spearheaded the development and implementation of RTTS’
proprietary scalability testing.

Previously, Jon worked as a lead testing consultant for Promark, Inc. where he developed the front-end
interface to the Promark Robot, now Compuware’s QA Load. Jon studied biology and computer science at
Carnegie-Mellon University.

About RTTS
RTTS is a professional services organization that specializes in the testing of IT applications and architecture.
With offices in New York and Boston, RTTS has been serving Fortune 500 and mid-sized companies
nationwide since 1996. RTTS draws on its expertise utilizing best-of breed products, expert test engineers
and proven methodology to provide the foremost end-to-end solution that ensures application functionality,
reliability, scalability and network performance. To learn more about RTTS, visit www.rttsweb.com or contact:

 Ron Axelrod, Director of Business Development
 Tel: (212) 240-9050 x17
 e-mail: raxelrod@rttsweb.com

