
RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 1

Diagnose and Cure

Application Performance
and

Availability Problems

Authored by:

Bill Hayduk
Director of Professional Services

RTTS

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 2

It is important for businesses to seriously consider taking proactive steps to manage
application performance before issues grow into serious business problems”
- Newport Group

“…Software bugs cost the U.S. economy an estimated $59.5 billion per year…. An
estimated $22.2 billion could be eliminated by improved testing that enables earlier
and more effective identification and removal of defects.”
- U.S. Department of Commerce National Institute of Standards and Technology
(NIST)

“…89% of the 800 IT managers contacted say they've experienced software-quality
problems within the past year that resulted in higher costs, lost revenue, or both.”
- InformationWeek

Through 2005, more than 80 percent of application performance and availability
failures will be blamed on network problems, but the network will represent less than
20 percent of the root cause (0.7 probability).”
- the Gartner Group

"Software quality has always been a problem. Companies have been willing to live
with that previously. Now they can't live with it because they don't have a business.
Apps and software used to support business; now it is the business. That's a major
difference.“
- IDC

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 3

“The heavily promoted New York fashion show featuring
Victoria's Secret's spring lineup took place … online and
attracted 1.5 million visitors when they expected a few
hundred thousand.
People attempted to log on to the show, swamping the
site, slowing response time, and leaving many frustrated
visitors viewing only error messages.”
-CNN

In 1999, Victoria’s Secret held an on-line show and many
customers could either not get in or experienced
tremendously slow response time. What would customers
have done if this happened to Amazon.com? How many
potential customers would immediately take their business
over to barnesandnoble.com? It was a good thing for
Victoria’s Secret that the majority of the viewers were men
that would come back again, regardless of the site’s
performance issues. But very few firms have such a
dedicated (and captive) audience.

With the current economic climate of recession and the
strong competition for dollars, it is absolutely vital that
companies assure the user experience is a good and productive one, or be prepared for customers to
take their business elsewhere.

The “Good Old Days”
Back in the “good old days” of the 1990’s, the issue of assuring that production applications scaled,
provided a good user experience and allowed users to process transactions quickly was typically not
crucial, due to the fact that most clients were internal customers (the exception being business-critical
applications, such as brokerage firms’ trading applications). There was an understanding that software
applications were “buggy”. But one could accurately estimate the size of the expected user population
and it was fairly easy to estimate the
maximum concurrency of users.
Therefore, scalability/performance tests
could easily assist with tuning the
application and architecture in a test
environment during pre-deployment.
Besides, with most architectures being
2-tiered (figure 1), it was relatively easy
to pinpoint the offending area: either the
client, the network, or the database.
Monitoring of the architecture typically
consisted of the database
administrators (DBAs) periodically
watching native monitors of the
databases (i.e. Sybase, Oracle, etc.)
and the network administrators looking
at archaic sniffer captures to determine
network saturation.

db

Architecture Issue (1990’s) - 2-tier client server

SQL over TCP/IP

Client

VB, Powerbuilder, C,
C++, Delphi, etc.

Oracle, Sybase, DB2,
Informix, etc.

Server

Potential problem points:

Easy to pinpoint – either the client, the
network, or the server.

One Content Source

Client/Server Model

Figure 1

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 4

The testing strategy applied was one of “black-box” testing. Black box testing is testing from the
interface perspective, where everything that goes on beyond the interface is thought of as a black box,
and is not open to the tester. This strategy works well with 2-tiered systems, because of the ease of
pinpointing the problematic area.

Companies who were diligent about
software testing and test automation
implemented a process with testing
stages very similar to that in figure 2.
Performance was hit and miss. If it
performed poorly or could not scale
well, it was tweaked in production or
retested in the test region. Pre-
deployment consisted of the unit,
integration, system and acceptance
phases of testing while post-deployment
consisted of troubleshooting the client
side for installation errors, the server
side for CPU & memory utilization and
disk I/O.

Today and the explosion of e-commerce
Today many things have changed. The most important are:

Ø Clients are often external customers, with the ability to leave if service is unsatisfactory.

This is the biggest change – the e-commerce business-to-business (b-to-b) and business-to-
consumer (b-to-c) explosion over the Internet has drastically altered the consumer landscape.
The good news is that you can now attract clients from vast geographic regions. The bad
news is – so can your competitors. The Internet puts the power in the hands of the consumer,
providing a very easy path to alternative choices if your offering is unsatisfactory.

Ø The user population and usage pattern may be entirely unpredictable. It may now be

impossible to predict the user population of your application at any given time (as with the
Victoria’s Secret incident).

Ø The architecture is heterogeneous and multi-tiered. The architecture is now a mix of

different applications running on different hardware, software and operating system platforms,
sometimes combining many different architectures into one heterogeneous system.

Ø Any part of the transaction outside your firewall is subject to a wide range of variables.

Because of the complexity and ubiquitous nature of the web, clients could be using a whole
host of browsers, different versions of each browser and different settings, different operating
systems and versions, and different connection speeds with a different number of hops to the
application, all of this beyond your control.

Typical Pre-Deployment Phases

unit
test

integration
test

system
test

acceptance
test

Pre-deployment

Post-deployment

Result = HitResult = Hit--oror--miss performance miss performance (for internal customers)(for internal customers)

Release to productionRelease to production

Figure 2

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 5

Figure 3 shows a
heterogeneous n-
tiered web
architecture that is
probably much
simpler than what
most firms have
deployed.

Obviously building a
much more complex
model than the 2-tier
client/server days,
companies now
deploy architectures
that have the
following
characteristics:

§ External clients utilizing different browsers and versions, or thin clients (i.e. Citrix) running on

various operating systems.

§ Internal clients running thick client applications (C++, VB, etc.).

§ These external and internal clients connecting over different communication speeds using
many different protocols.

§ Interacting with web, application, e-business, content, ERP, CRM and database servers, all
sitting on different operating systems.

Now when firms use the old model of black box testing for functionality, performance and scalability,
they may or may not find any issues in their unit, integration, system and acceptance phases, but when
they roll out the application, it suffers in production. Clients complain and senior management wants an
answer.

Some of the reasons the application may not scale in production after they scaled during testing
are:
§ The hardware in the test environment is not identical to production.

§ Routers, switches, etc. are not being utilized during testing.

§ If a web architecture is involved, testing does not take into account the internet’s characteristics
(multiple hops, connection speeds, etc.).

§ Security, encryption and compression may not have been implemented during testing.

§ Software and/or hardware changes or upgrades may have occurred in production.

So while the application has been tuned in the test environment, it has not been optimized for
production.

And then there are the specific business issues that will arise and are critical that they be resolved.

Architecture: n-tier heterogeneous environment

Web Servers
Microsoft IIS

Apache
Netscape

App Servers
Weblogic

Websphere
iPlanet

eBusiness
Vignette

Ariba
Broadvision

Content
Reuters

Dow Jones
Bloomberg

ERP/CRM
Oracle

PeopleSoft
SAP

Seibel

DBMS
Oracle
Sybase

MS SQL Server
IBM DB2/Informix

Server OS
Windows

HP-UX
Sun Solaris

IBM AIX
Linux

Com. Lines
56k dial -up

DSL
T1
T3

Cable modem
ISDN

Browsers
MS Internet Explorer
Netscape Navigator

AOL

Client-side OS
Windows

Linux
Apple

ThickApps
C/C++

VB, VB.Net
C#

Java

Browsers
MS Internet Explorer
Netscape Navigator

AOL

Network Traffic
HTTP, HTTPS,

XML/ SOAP
SSL, FTP,
TCP/IP,

ODBC, JDBC

Internal Users -
Client Server

Internal Users-
Web

Internet
Extranet
Intranet

Internet
Extranet
Intranet

FirewallFirewall
External

Users – Web,
Emulators

External
Users – Web,

Emulators

Security
Server

Web
Server

Security
Server

Security
Server

Web
Server

databasedatabase

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

Web Model

Emulators
Citrix

MS Terminal Server
Attachmate

Rhumba

Figure 3

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 6

These business issues are:

§ End user response time is too slow.

§ End user performance exceeds SLA agreements.

§ The application failed on the user’s workstation.

§ The end user cannot process the transaction.

These result in a loss of customer confidence and loss of business due to poor end user experience.

Those technology issues that arise and are difficult to diagnose due to the complexity of the current
architecture are:

§ Excessive memory or CPU usage on the client.

§ Problematic SQL calls or HTTP statements.

§ Network latency, chattiness or network error issues.

§ Abnormal or unauthorized applications running on the network.

§ Unexpectedly large file transfers or data dumps.

§ SQL statement errors.

§ Services/processes that are not available.

§ The inability of technology group and/or operations to view and monitor all components from a
single console.

Potential Problem Areas

Internal Users -
Client Server

Internal Users-
Web

FirewallExternal
Users – Web,

emulators

Security
Server

Web
Server

database

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

XML

Web
Service

Internet
Extranet
Intranet

Internal Users -
Client Server

Internal Users-
Web

FirewallFirewallExternal
Users – Web,

emulators

External
Users – Web,

emulators

Security
Server

Security
Server

Web
Server

databasedatabase

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

XML

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

CRM/ERP
Server

Application/
Middleware

Server

Content/eBusiness
Server

XML

Web
Service

Internet
Extranet
Intranet

Internet
Extranet
Intranet

SOAP

Technology Problem Points

Figure 4

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 7

When performing this testing through the black box approach during pre-deployment, we may be able
to identify that there are problems with functionality and performance (the answer to the question “What
is the problem?”), but we will not answer the rest of the questions, specifically:

- Where is the problem located?

- Why is the problem causing poor performance?

- How do we fix the problem?

Customers already know there is a problem (i.e. poor performance). They expect us to assist with
answering the “where”, “why” and “how” questions. These questions cannot be answered with a black
box approach and testing cannot be performed in post-deployment with conventional functional and
performance testing tools.

The Solution
The solution to finding and fixing problems in
post-deployment comes down to three action
activities: monitor, diagnose, and tune (figure 5).

Monitor – Periodic checking of client systems,
networks, servers and databases.
Diagnose – Troubleshooting the precise nature
and cause of performance bottlenecks.
Tune – Fine-tuning the architecture to provide
optimal performance.

Both monitoring and diagnosing are performed
utilizing test tools that allow for drill down into the
pertinent information. Tuning is performed manually by adjusting settings on the applicable client and
server software, operating systems and hardware for optimum scalability and performance.

Client-Side Monitoring
Monitoring is performed from the client-side and from the server side. Client-side monitoring uses
agents to run sample transactions to emulate the user experience. Typically this software can monitor
client-side resources and application faults and can do this for web, client/server, 3270 emulators and
Citrix applications. Agents reside on user
workstation and use a scripting tool. The best
of these can initiate network traces of
transactions, reporting when threshold is
exceeded. Monitoring agents measure the
end user application availability and response
times – by transaction, location and time
period. The agents also provide automatic
detailed diagnostics and drill down into
transactions that fail to meet service level
thresholds. This is a good way to catch the
intermittent performance issues. For web and
database applications, they display critical
timings down to the application thread level
(figure 6). Also, client-side monitoring tools can
send emails, phone messages, pager
messages and other alerts when thres holds have been exceeded.

Figure 5

Figure 6

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 8

Focus
o End-user experience
o Client -side resource monitoring
o Application fault monitoring
o Typically monitors web, Windows, 3270 and Citrix transactions

Technology
o Agent resides on user workstation
o Uses scripting tool for active or passive modes
o Initiates trace of transaction, reporting when threshold is exceeded.

Benefits
o Validation of end user performance
o Notification of declining performance
o Alerts execute if business transactions exceed thresholds
o Diagnoses application faults on end-user PC
o Answers whether client, network, server or application are the issue

Server-Side Monitoring
Server-side agents can monitor the operating systems, databases, and applications running on
Windows, UNIX, and Novell servers. Many tools monitor hundreds of metrics out of the box. They can
also correlate the data, so you can quickly understand how database issues are impacting application
performance. Many can initiate a corrective
action, such as automatically restarting a critical
service or process that has failed, which
reduces user downtime. Server-side monitors
usually have the ability to send notification via
emails or paging.

These tools allow you to pinpoint server-side
spikes and provide drill-down capabilities to
determine the cause of the spike.

The main benefits to using server-side
monitoring are: better server management,
reduced cost of server expansion, notification
and correction of critical server or database
issues before applications fail and performance
trending for pro-active planning.

Focus
o DB servers, application servers,

web servers, mail servers
o Application, web, and database

server resource usage,
monitoring

Technology

o Agent resides on server
o Operating system monitors (i.e.

UNIX, Windows)
o Application monitors (i.e. SAP,

PeopleSoft, Oracle apps, MS
Exchange, Lotus Notes).

o Application Server monitors (i.e.
WebLogic, Websphere, iPlanet, etc.)

o Database monitors (i.e Oracle, Sybase, DB2, etc.)

Figure 7

Figure 8

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 9

Benefits
o Identify CPU, memory, db/sql problems, service availability
o Troubleshoot with detailed diagnostic reports
o Can re-establish network connections, restart apps.
o Provides notification via paging, email, etc.

Network Monitoring
Network monitoring tools collect application performance metrics (traffic volume, response times) for
applications and integrate data from both a LAN and WAN perspective. Network monitors collect
statistics from all application conversations on
the wire and organizes the data for
performance evaluation. These tools help
identify the network load and pinpoint unusual
activity and can also help validate security
policies, analyze security breaches and provide
a historical audit trail of who was doing what on
your network.

Some tools can view WAN utilization in both
directions of a particular WAN link and some
can show when traffic bursts occur. One tool
can automatically identify all applications and
who is using them and when the activity is
happening. Network monitoring answers the
questions of what (application), who
(workstation), when (time of day), where
(topology), how much (traffic), and how long (response
times). The data generated from the tool
provides a convenient way to track network use
and abuse. The main benefits of network
monitoring tools are: reduced problem analysis
and resolution time, better controls on network
usage resulting in cost containment of
bandwidth upgrades, audit trail and visibility.

Focus
o Application usage across

WANs, LANs
o Determines which applications

are being run where

Technology

o Uses hardware probes
throughout the network
segments

o Can typically identify most commercial
applications out of the box

Benefits

o Provides Identification of who, what, when, where, how much and how long
o Tracks network use and abuse
o Drill down to understand poor response times
o Validate security and provide audit trail

Figure 9

Figure 10

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 10

Application, Network and Server Diagnostics
Diagnostic tools are utilized for finding and “diagnosing” issues in post-deployment. Tools that separate
the application from the network from the servers are excellent at diagnosis. These tools utilize multiple
packet capture trace files that are merged to
depict a true end-to-end transaction.

These tools help to quickly isolate a poorly
performing application and break it down into
application threads (HTTP or SQL calls) so that
developers and DBAs can understand exactly
where the problem is located. They will quickly
reveal whether applications that can be
improved with increased bandwidth or whether
the are performing poorly, due to design flaws.
They can determine whether the issue lies in the
application, the network or the server (Figures 11
and 12).

Focus
o Monitor conversation between

application and server
o Problematic SQL calls or HTTP

statements.
o Diagnose network latency,

chattiness or network error
issues.

Technology

o Uses packet capture traces to
analyze threads

o Can perform direct network
capture or import standard
sniffer file types

Benefits

o Pinpoint the source of poor
performance.

o Drill down to application
threads.

o Visualize performance issues.
o End finger pointing between

network, db and app teams.

Figure 11

Figure 12

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 11

Tuning
Tuning of database and application servers requires expertise and experience garnered from working
on specific IT architecture.

Database Tuning
Database performance tuning is the iterative process of analyzing the ramifications of hardware
and/or software configuration changes with the intent of increasing application performance
while minimizing costs.

The database performance tuning realm
also extends to web clients, such as
application servers, and fat clients (i.e.
Powerbuilder, Visual Basic, C++). Experts at
tuning (such as RTTS) can pinpoint issues
relating to the manner in which data is
requested and client/server communication
is enabled.

Regardless of the RDBMS that is
implemented, tuning experts with domain

expertise can provide solutions for
tuning database servers and their
clients. Although the configurable
parameter terminology differs by platform, the same performance tuning concepts apply to all
database server vendors.

o Determine the level of tuning – Component-level tuning or system-level tuning? Do you
want to tune the database server as an isolated component or as part of a larger
application?

o Understand the end-user community – Gather metrics regarding the manner in which
the database will be accessed. What SQL queries will be executed? What business
transactions will be executed? How often are transactions executed?

o Gather Performance Requirements – Determining the exit criteria for tuning needs to
be established in order to know when sufficient testing has occurred.

o Implement diagnostic tools – Implement tools that issue the necessary SQL queries,
updates and deletes that emulate the business scenarios.

o Application Profilers – Implement tools to profile transaction characteristics. Determine
the network characteristics of a transaction, such as bandwidth utilization and
conversational chattiness. Ascertain the CPU utilization on the database server and
client, memory utilization, query compilation and execution times.

o Analyze Results – Execute the transactions and collect metrics, such as response
times, transaction volumes, operating system statistics, database server statistics.

data tables
indexes

transaction
log

SQL compiler

SQL executive

Access manager

System
procedures

N
et

w
or

k
In

te
rf

ac
e

RPC

Data
cache

Procedure
cache

Shared memory

data tables
indexes

transaction
log

SQL compiler

SQL executive

Access manager

System
procedures

N
et

w
or

k
In

te
rf

ac
e

RPC

Data
cache

Procedure
cache

Data
cache

Procedure
cache

Shared memory

request

response

Application code

courtesy of Sybase, Inc.

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 12

Armed with a proven testing methodology and best practices, experts can provide an integral
solution for resolving many issues associated with the relational database management system
(RDBMS) and operating system kernel parameters. These may include:

o Providing an inventory of slow or inefficient database queries
o Determining the proper size of connection pools to support the arrival rate of SQL

requests
o Discovering the inability of a RDBMS to scale on a multiprocessor database server

(RS/6000 SMP)
o Establishing the best configuration sizes for data and procedure caches
o Ascertaining the best hardware platform to implement
o Discerning the most efficient auditing scheme that would prevent deadlocks, while

maintaining history of the business processes
o Validating the correct indexes to employ, such as clustered indexes versus non-

clustered indexes

As a result, database server capacity and scalability are increased by addressing:
o the use of a small packet size between the client and the server
o chatty conversation over high latency network links
o large amounts of unused data returned to the client
o redundant database queries
o additional tuning methods

Application Server Tuning
Conceptually the role of the application server is rather simple. Application servers comprise
the core business processes and logic within a distributed N-tier application and act as the
“glue” between client requests for application services and back-end data sources. However,
there are many configurable parameters that affect the efficiency of this process, such as
available memory, the number of available
threads, cache sizes and connection pools, as
well as the workload of the end-user community.
Requests for application data need to be executed
simultaneously and resolved in a timely fashion
with finite hardware and software resources.

Since the implementation and objectives of the
application server are unique to each individual
application, there is quite a bit to gain by tuning
the application server based upon its specific
business requirements and available resources.
For instance, the following symptoms all have
been experienced within previous client
applications and were solved through incremental
configuration changes within a Java application
server.

o Fluctuating or periodic increases in end-user

response times
o Increasing response times over time
o Under utilization of one or more servers within the application
o Connections refused by the application server
o Memory leaks
o Limited throughput
o Java Exceptions
o HTTP Internal Server Errors

courtesy of BEA Systems

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 13

Typical solutions involve tuning the Java Virtual Machine (JVM) heap size and garbage
collection, configuring the number of application server threads that handle end-user requests,
upgrading to a newer JVM or configuring the connection pool size to a back-end data source.

Regardless of the specific application server vendor, tuning experts (such as RTTS) have
standard solutions for tuning applications running within any application server platform, such
as WebLogic, WebSphere, IIS/ASP, ColdFusion, JRun, Microsoft Transaction Server (MTS),
CGI/FCGI, etc. The same performanc e tuning concepts apply to all application server vendors,
although the terminology differs.

o Determine the level of tuning – Component-level tuning, such as Java Servlets, EJB’s,

COM/DCOM components, or system-level tuning?

o Understand the end-user community – Gather metrics regarding the manner in which
the application will be used. What components will have a higher degree of exposure
and pose the greatest risk? What business transactions will be executed?

o Gather performance requirements – Determining the exit criteria for tuning needs to be
established in order to know when sufficient testing has occurred.

o Automate test scripts – Create automated test scripts that can invoke the necessary
component services or drive the business scenario.

o Application profilers – Implement ancillary tools to profile transaction characteristics.
Determine the network characteristics, CPU utilization, SQL calls that a particular
transaction or component exhibits.

o Analyze results – Run the planned tests and collect metrics, such as response times,
transaction volumes, operating system statistics, application server statistics.

Making the ROI Case
The bottom line is that monitoring, diagnosing and tuning applications, either separately or
collectively, will cost more money up front to implement. What is the return that can be expected
from this investment? What are the benefits? Let’s take a look at these on a high level.

1) You will save money on LAN/WAN upgrades by determining whether performance is
actually a bandwidth problem (it usually is not).

2) You will save time on resources, pinpointing the problematic area (database, network,
application server or client).

3) You will save expensive downtime by proactively monitoring and diagnosing problems
before they happen.

4) You will save clients by monitoring and making sure that any degradation in the user
experience is dealt with swiftly.

Conclusion
Although rigorous scalability/performance testing in pre-deployment adds tremendous value with
regard to the application’s ability to scale in a test environment, it does not assure a quality
experience for the user and availability of the application 24x7 in post-deployment. To proactively
assure that your application is available, functional, reliable and scalable, the solution for post-
deployment is straightforward:

- monitor your application,

- diagnose the problem and

- tune the environment.

These action items are essential for firms concerned with providing a great user experience and with
retaining their customers.

RTTS – How to Diagnose and Cure Application Performance and Availability Problems

copyright Real-Time Technology Solutions, Inc. April 14, 2003 version 2.2 page 14

About the author
Bill Hayduk, founder/president of RTTS and director of its professional services group, has an
excellent reputation in the technology field and is particularly noted for his test methodology and test
automation expertise. Over the last 20 years, Bill has successfully implemented large-scale projects at
many Fortune 500 firms. He has consulted in various sectors including global banks, brokerage firms,
multimedia conglomerates, pharmaceutical, insurance and software companies.

Bill holds a Master of Science (MS) degree in computer information systems from the Zicklin School of
Business (Baruch College) and a Bachelor of Arts in Economics from Villanova University. He has
been a selected speaker at industry-specific trade conferences, as well as a source of information for
corporations and has been referenced in many industry trade publications.

About RTTS
RTTS is a professional services organization that specializes in the testing, monitoring, diagnosing and
tuning of IT applications and architecture. Serving Fortune 500 and mid-sized companies nationwide,
RTTS has offices in New York, Boston, Phoenix and Orlando. RTTS draws on its expertise utilizing
best-of breed products, expert test engineers and proven methodology to provide the foremost end-to-
end solution that ensures application functionality, reliability, scalability and network performance.

From strategically planning your entire testing approach to tactically implementing the effort in pre-
deployment and then through monitoring transactions and diagnosing bottlenecks and other post-
deployment problems, RTTS provides a full-cycle iterative solution for your software quality needs.

RTTS offers full outsourcing of your entire testing needs or can provide you with individual test tool
product expertise. We offer expert mentoring and education services, along with a proven game plan
for providing knowledge and skills transfer.

To learn more about RTTS, visit www.rttsweb.com.

