

Massaging Test Data in Excel
Using Macros and VBA

Utilizing IBM Rational Performance Tester

Authored by
Jonathan L. Harris

Senior Performance Architect

©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com

Introduction
The quantity of data produced from an application-based performance test can be
monumental when faced with the task of analyzing it. While it is advantageous to have a
large amount of information available, typical analysis starts with a select subset.
Specifically, data involving business transaction duration times, user initiated task
response times and the number of completed transaction are the starting point. Though
performance testing tools,
such as IBM Rational
Performance Tester (RPT),
have functionality to
manipulate graphical
elements and overlay data
for correlation, there are
statistical and analytical
methods better suited to spreadsheet applications such as Microsoft Excel. In addition,
there may be company standards in place for report presentation that are possible only
outside of RPT functionality. For many, exporting the data and using a spreadsheet for
analysis is commonplace. RPT has functionality to export raw data to a comma
separated format. Unfortunately, once this data is available outside of the tool, there are
challenges and time-intensive tasks in manipulating the data to a form and format
required by decision makers. This whitepaper will explain how to use Visual Basic for
Applications (VBA) and the macro functionality in Microsoft Excel to manipulate export
data in order to save time in preparing performance data charts.

Challenges
RPT has a functionality to export performance test data to a CSV (comma separated
value) format for use in a spreadsheet program such as Microsoft Excel. However,
there are several challenges to overcome when exporting from RPT to Excel.

Challenge If you are
using an older version of
Excel (prior to Office 2007),
then you will most likely
leave the default setting to
have RPT split the export
data into separate files
(Figure 2). This is because
versions of Excel prior to
Office 2007 are limited to
256 columns of data. This in
itself is not an issue, but
does pose the inconvenience
of having to open multiple
files.

 2
©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com

Even running a test that has a small number of
scripts with a small number of page timers and user
defined transactions can produce well over 256
columns of data. The example (Figure 2) shows 11
export files created from a web test with only seven
scripts; and the data does not even include the page
element timers. These files contain over 2,500
columns of data.

Challenge comes in the form of aligning the data if
you chose to split the export into multiple files. Each
of the exported data files may be different with
regards to the timestamps. If none of the columns of
data within a row contain any numbers, then it is not
included. This causes gaps in the rows of data when
comparing CSV files (Figure 3). The red-colored
timestamps in the first file are missing in the second
file. When you go through the data and pull the
columns you need, such as the page and transaction
timers, you cannot easily combine them into a single
file since the number of rows in each file will be
different due to the gaps. The more files you have to
go through, the longer it will take to align them.

Challenge is in graphing the data. If you prefer
line charts, Excel does not work well with blank cells
(see Figure 3) and the resultant line charts are spotty
with unlinked lines. To get around this you need to
place the formula “=NA()” in each of the blank cells. If
you do not mind working with multiple files or multiple
worksheets (after copying and pasting) then by all means do so.

Challenge The next challenge is that for better understandability and perception, the
performance times reported need to be converted to seconds from milliseconds; unless
of course your business transactions are not human interaction based.

Challenge Depending upon the communication protocol(s) used in the testing, some
will report response times even upon a transaction timeout condition. Though reporting
that timeouts occurred is the correct thing to do, those timeouts should not be included
in the statistics along with valid proper response times. The task involved with removing
these timeouts from the data can be time consuming as well. Another note to make
here, since RPT reports the data based on an average over a time interval, if multiple
data points occurred during an interval that included timeouts, the data will be skewed
and there is no way to fix it since the lowest level of data is over the sampling interval.

Solution Strategy

 3
©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com 4
©2009 Real-Time Technology Solutions, Inc.

Each of the challenges identified can be addressed utilizing a modular approach of
building independent macro routines within Microsoft Excel. Though the routines
outlined here will work within any version of Excel, the context here will be under the
Office 2007 release. Ultimately the routines can be executed sequentially via a
controlling macro to prepare the data for graphing.

When creating macros in Excel, the typical and quickest way to begin is to use the
recording functionality to create the base program code of the task at hand (visit
http://office.microsoft.com/en-us/excel/HP052047111033.aspx or refer to Microsoft
Excel help). For instance, the first routine to create is one that pares down the columns
of data to include only the average page and average transaction times. To begin,
record the deletion of a column of data and then build the code around it to identify the
columns to delete. You can also record the conversion of milliseconds to seconds. This
can be done by simply selecting a cell and entering the appropriate data (i.e. value
divided by 1000).

If you delve into the macro recording and coding aspect without advanced knowledge of
methods and objects relevant to Excel, you will spend some time in the Help file,
searching the web and possibly at the book store looking at VBA programming for
Excel. This is definitely worth the time, especially if you consider the time saved in the
long run of not having to manipulate test data on future testing projects.

The solution includes the following tasks (subroutines) to be created:

1. Remove unneeded columns of data
2. Remove unneeded rows of header data and rows containing no data
3. Convert milliseconds to seconds (timestamps and data)
4. Add minimum, average, maximum and standard deviation calculations
5. Add “=NA()” to blank cells to allow for smooth line charts
6. Remove invalid/outlier timings (i.e. timeouts)

Code
Task 1 is to pare down the huge number of columns to just the average page response
times. To do this you will need to inspect multiple cells. As seen in Figure 4, the values
of rows 9, 10, 12 and 13 mark the average page response times. The reason for
including row 13 (blank cell) is to distinguish the response time from other data such as
the count per interval. The subsequent code (Listing 1) will inspect each of the columns
and those not matching the criteria designating a column as page response time data
will be selected and deleted. In addition, the column containing the active user count will
also be preserved so that response times as a function of the user load can be
produced. With all code presented here, feel free to make the appropriate modifications
to preserve other data columns such as the active user count, transaction timers, count
for the interval or cumulative count. Additional routines will be needed to sort these
columns if you do not wish to perform the sorting task manually.

http://office.microsoft.com/en-us/excel/HP052047111033.aspx

 www.rtts.com 5
©2009 Real-Time Technology Solutions, Inc.

One final note regarding the previous code listing; the “Active Users” column header is
preserved (see the code in the “ElseIf”) from the header row deletion performed in the
next subroutine.

 www.rtts.com

Tasks 2 and 3 are to remove the unneeded header rows and rows of data containing no
information, and reformat the numbers from milliseconds to seconds (Listing 2).
Removing the first n rows is straightforward. For the data rows, all of the cells in the row
must be inspected and if none contain any data, the row is deleted. Since inspection of
the cells is occurring, the conversion to seconds and formatting to two decimal places is
a logical addition.

Task 4 is to add minimum, average, maximum and standard deviation calculations. To
do this, the code iterates down the timestamp column to find the last entry, and then
adds the appropriate formulas across the column. While iterating the timestamp column
the code additionally converts the timestamp from milliseconds to seconds (Listing 3).

 6
©2009 Real-Time Technology Solutions, Inc.

Depending upon your preferences in creating charts of response time versus elapsed
time (or load) you may prefer line charts over scatter plots or vice versa. Under the
assumption that line charts are your preference, you will need to replace any blank cells
with the formula “=NA()”. This is because in line charts if there are blank data cells then
there will be a gap between data points and it is beneficial to see all points connect in a
line chart. The following subroutine (Listing 4) will apply the formula to all blank cells. In
order to preserve the statistical data calculations previously created, the statistics cells
will be copied and pasted back as value since placing the “=NA()” formula in a
calculation will result in the calculation being “N/A”.

 www.rtts.com 7
©2009 Real-Time Technology Solutions, Inc.

At this point the data is ready to be graphed. While creating the line charts you may
notice that there are times when the lines hit a high plateau or, upon investigation, may
be deemed invalid data points. If this occurs you will want to remove those sample
points. Since determination is on a page-by-page basis, the following subroutine will
replace any invalidated samples with the formula “=NA()”. This routine (Listing 5) will
ask for a threshold to which any values equal to or greater than will be replaced. Prior to
running this routine you will need to activate (click on) any cell in the column of data in
question. In order to recalculate the statistics, the routine removes the “=NA()” formulas
as it transverses down the data, recalculates the statistics and then reapplies the
“=NA()” formulas.

 www.rtts.com 8
©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com 9
©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com

Bonus Code
Here is an additional routine (Listing 6) that will convert the timestamps currently in
seconds (converted from milliseconds in the Add_Calculations routine) to the
“hh:mm:ss” format.

 10
©2009 Real-Time Technology Solutions, Inc.

 www.rtts.com 11
©2009 Real-Time Technology Solutions, Inc.

Conclusion
The quantity of data exported from a test run can be overwhelming. At the least, it
requires time to pull the appropriate information and massage it to a format suitable for
graphing and ultimately, decision-making. The Excel macro routines presented in this
document will reduce that time considerably; possibly from hours to mere seconds.
Additionally, Excel macros can be used to graph the resultant data. In future releases of
RPT, the control over data export may change, but for now you have the methods
presented here to manipulate the data.

 www.rtts.com 12
©2009 Real-Time Technology Solutions, Inc.

About the Author
Jonathan Harris, Vice President, Division Manager for Performance and Scalability for
RTTS, has planned and executed hundreds of performance evaluations within every
major market segment. With over 19 years of experience in programming and testing,
he has spearheaded the development and implementation of RTTS’ proprietary
scalability testing.

Previously, Jon worked as a lead testing consultant for Promark, Inc. where he
developed the front-end interface to the Promark Robot, now Compuware’s QA Load.
Jon studied computer science and biology at Carnegie-Mellon University.

About RTTS
RTTS is the premier professional services organization that specializes in providing
software quality for critical business applications. With offices in New York, Atlanta,
Philadelphia and Phoenix, RTTS has been serving Fortune 500 and mid-sized
companies since 1996. RTTS draws on its expertise utilizing its proven methodology,
expert engineers and the industry’s best-of breed tools to provide the foremost end-to-
end solution that ensures application functionality, reliability, scalability and availability.
To learn more about RTTS, visit www.rttsweb.com.

http://www.rttsweb.com/

